a2 United States Patent

US009250920B2

(10) Patent No.: US 9,250,920 B2

Sanner, 111 et al. (45) Date of Patent: *Feb. 2, 2016
(54) INITIALIZING PROCESSOR CORES IN A USPC ottt 713/1,2
MULTIPROCESSOR SYSTEM See application file for complete search history.
(71) Applicant: INTERNATIONAL BUSINESS (56) References Cited
MACHINES CORPORATION,
Armonk, NY (US) U.S. PATENT DOCUMENTS
(72) Inventors: David Dean Sanner, II1, Rochester, MN 20047/63027%2343‘ izl . 31%88?1]Salé et al. | 091220
. : : H urtetal. ...
(gg)f JGeSh“a ngii g't'.‘lllﬂ;’{Ausmi’l x 2006/0010312 Al* 1/2006 Sugimori 713/1
(US): Gregory Scott Still, Researc 2007/0283137 AL* 12/2007 Ueltschey etal. 713/1
Triangle Park, NC (US); Alwood
?Sgick Williams, ITI, Rochester, MN FOREIGN PATENT DOCUMENTS
Jp 2000-187533 7/2000
(73) Assignee: International Business Machines * cited b .
Corporation, Armonk, NY (US) ciied by examuner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Jaweed A Abbaszadeh
patent is extended or adjusted under 35 Assistant Examiner — Gary Collins
U.S.C. 154(b) by 179 days. (74) Attorney, Agent, or Firm — BEustace P. Isidore; Yudell
This patent is subject to a terminal dis- Isidore PLLC
claimer.
57 ABSTRACT
(21) Appl. No.: 13/781,459 A method for initializing processor cores in a multiprocessor
(22) Filed: Feb. 28. 2013 system. The method includes a microcontroller initializing a
) T first processor utilizing a common initialization image for all
(65) Prior Publication Data processor cores within the first processor. The first processor
detects and executes system firmware. All remaining proces-
US 2014/0149732 Al May 29, 2014 sors are initialized utilizing the common initialization image.
L. The executing firmware detects a system configuration of the
Related U.S. Application Data multiprocessor system. A customized processor initialization
(63) Continuation of application No. 13/685,699, filed on image for each of the processor cores in the multiprocessor
Nov. 26, 2012. system is generated and stored to a storage device. The pro-
cessor cores are triggered to enter a power save state in which
(51) Int.CL all initialization settings of the processor cores are lost. In
GO6F 9/44 (2006.01) response to all the processor cores entering the power save
(52) U.S.CL state, the first processor core of the first processor is re-
CPC ..o GOGF 9/4405 (2013.01); GOGF 9/4403 initialized using a first customized initialization image gen-
(2013.01); GOGF 9/4401 (2013.01) erated for the first processor core.
(58) Field of Classification Search

CPC GOGF 9/4405; GOGF 9/4401; GOGF 9/4403

st

[

DETECT POWER ON OF
PROCESSOR 1602

|

READ COMMON
INITIALIZATION IMAGE FROM
STORAGE DEVICE g4

!

INTIALIZE PROCESSOR 1
CORE 1 WITH COMMON
INITIALIZATION IMAGE G5

RETRIEVE
FIRMWARE §08

EXECUTE FIRMIWARE ON
PROCESSOR 1 CORE 1 61

INITIALIZE ALL REMAINING
PROCESSORS WATH FIRMWARE
[

RETRENE SYSTEM
CONFIGURATION VIA
FIRMWARE 14

15 Claims, 7 Drawing Sheets

‘GENERATE CUSTOMIZED
FROCESSOR INITIALIZATION
IMAGES FOR EACH OF THE

PROCESSOR CORES 616

STORE CUSTOM PROCESSOR
IMITIALIZATION MAGES TO
'STORAGE DEVICE 1§

|

TRANSHIT HEMORY
LOGATIONS OF CUSTOM
INFTALIZATION MAGES

FROM FIRMWARE TO
MICROCONTROLLER 628

{ o b

US 9,250,920 B2

Sheet 1 of 7

Feb. 2, 2016

U.S. Patent

AT 90v-43 1N B8N L O
it i S ;
T i voir] | s |
| viva YIYA ALY A / "
THANOT HISA A3 OYOTHEOM T e
J m— - — 531 £t |
11 uosindacaH (120w o oA _ |
| NOLLYZIRLNG FI |
i WOLSNG AHOPEN WALSAS |
H .
| o mewwu%% vilaovdols |l T “
IO : 801
i 5N HATICHINGS ANOREN M
IR SN N _ .m. — = ————— = T lllllll —_—
DT NG LY OININNG D
P T Epapppy Sy sy Sy S T e
i Ei 1 Gl ZeL 141
¥ ol l_ N o) Faing wan o o) LN waw
R
R | 8tL 8t 751
i — AP — FHIYD “ IHOVD]
VLo g g — . - — LN
1 i) FET o -))
m j-p] |v3000) [E00 SECHE 00| | 200] fteemm
i | HOSSADOHdHA LN
W _ 251 %l o w - Fin (i3
o | zavool biawon 2 zakool izuon -
 Joouazaly | B0L (WOYEII)
¥ AHOWEN (ST TION INOOOHO (STHITIOULNODOUIIA AHONT
103 | BOT 2 MOS0 F0T | HOSSI00Yd Wao] _
T o e v e e wann - — o—— gy oot bt oot oot sonss soams ssosn asass rava anon sns woan aso oot vt o o oo oot oot it ot s, assa smvan smva savstn nasn onsa asats wmses
8ot $da

US 9,250,920 B2

Sheet 2 of 7

Feb. 2, 2016

U.S. Patent

{7 i
} —
{ o BT
57T J0YdS HISN Scddy SO “THYAMRYEI ONY A
m TOVHOLS SINANCANOD O y—
m SIOIATA WILSAS at 601
i AHOWIN WILSAS
I R S A e N
OIHaY 4 NOLLYIINTBNND D
Fi78 [A} [i743
oy THING O THIND W THING OAF PIMAND Waw
¥ s *
SR : gl . gt
- .
m m A5V mm FHOVS » « > IHIYD
YL AN B sASSNY
1 ' ol WL , - BT by
: e |73800] {300 HOSSAV0A AN v 309 {ead00
1 1
: : 233 oL £t ar oIt
3 ”~,
m gomm@m z3uo0t | 3yoo — z3oo] 1i3woo Cw
1 I . _ (HOHdF3)
} Joionan ; FOT HOSSA00M (ST TIOHLNODOEDIY 70T ¥0S5I00Hd O
1OWooT 3 Y201

50T SININOIWOD DNISSI00Hd

US 9,250,920 B2

Sheet 3 of 7

Feb. 2, 2016

U.S. Patent

& oOId

0% viva LONaoHd LA lLittp ottt oioty (it |t
B0F SHILSIDTY YIVA/SONILLIS NOUVZIVILINI WOLSND
FOT e AN ARELSY
B0% 30V BCT pHOQY .
NOLLYZIIVELNT O8NS & 3MOD i
— oleisleloiolviais |LiniE |0
PO 0w FEE ex0ay e ; "
NOLLYZF VLN HOLSAD € 3905 A 20 SH3LSI9F YIYA/SONILLIS NOUVZIIYILING HOLSNO
GLT L 3M0D
55 I0vl TG zaaay T
NOLLYZITWLLNI FIOLSNS 2 360D WaN 1 FT Fuommea | n
iiiiii B ug
098 30V 55 Luaay SLL 3HOVO RS
NOLLYZIVELNE FIOLSND | MO0 A 07T 7T
. HATIOHLNOD ¥IMOJ HITIOHINGD O
FE NOLLYOOT AHOWIN o
Bl > . HITIONLNOGD
/ {g} Y
\ SPHITIONANODONIN MO
[— —
JOEE adal 701 WOSSIo0Hd
79T AHOWIN WILSAS —— e 4
w
mom‘

US 9,250,920 B2

Sheet 4 of 7

Feb. 2, 2016

U.S. Patent

v Old

POT Juvaind
B8% 30vRl BET py0QY
NOILLYZIIVELNG WOLSAD ¥ 3800 a0
O 20w $5¢ cyaav
NOLLYZITVELNG BIOLSND £ 3800 e
TG 3oV 758 ZHOaY
NOLLYZEIVELING WOLSND 2 3600 P
8% 20yl 85T 1H0aY
NOILLYZITELNG OLSAD | 3H00 v
G727 NOILYDOT AHON3N
“ TLF 4990 NOHLYZE VLN zog wWoo |
iiiiiiiiiiiii]
08T (O} AHOWIN 00T
S0%

Bltltltlolo ltialt Lot lo
TE SHALSIOT ¥ LYQ/SONILLIS NOLLYZITAILING WOLSTD
BT L 300
eer ml - T
HITIONINGD O/ | T B
mmﬁng - ,mw.m‘)
AMOWIV SHOWD
744 g1t FiT
MATIONINGD MIMO § 300 ¢ 2H00
shyaTionnooouom | Jzauoo 0iE 18
p—— SNLVLS diY
JOEE Qanl 201 ¥039300ud
Attt bttt . lm

US 9,250,920 B2

Sheet S of 7

Feb. 2, 2016

U.S. Patent

g6 Ol

mﬁ%ﬂm@ 75 4ILNIOD TOVIN A THOD ™

95E HOOY) | gy 100 3OV b 3HOO 1
Wan

Yee SHOOYI | fowwg NI SOVINE S 3HOT Ld
WaN

L CHUQY) | oo i 300 2 380D 14
AN

%@Mm% B7% Y3LNIOG 3OV | 3400 1d

OLE (NOILYODT LINE OLSNO) HNLONYLS YIVG

0101E 19

28 ¥3LSIDT
ALYLS HIMO

[ird3
HITIOHINGD Y3MOd

78
HATIOYINGOOHDE

U.S. Patent

Feb. 2, 2016

DETECT POWER ON OF
PROCESSOR 1502

¥

READ COMMON
INITIALIZATION IMAGE FROM
STORAGE DEVICE 804

L 4

INITIALIZE PROCESSOR 1
CORE 1 WITH COMMON
INITIALIZATION IMAGE 686

A 4

RETRIEVE
FIRMWARE §08

¥

EXECUTE FIRMWARE ON
PROCESSOR 1 CORE 1 610

¥

INITIALIFE AlLL BEMAINING
PROCESSORS WITH FIRMWARE
512

h

RETRENVE SYSTEM
CONFIGURATION ViA
FIRMWARE 8§14

Sheet 6 of 7

US 9,250,920 B2

FIG. 6

GENERATE CUSTOMIZED
PROCESSOR INITIALIZATION
IMAGES FOR EACH OF THE
PROCESSOR CORES 816

A 4

STORE CUSTOM PROCESSOR
INITIALIZATION BJAGES TQ
STORAGE DEVICE 618

h A

TRANSMIT MEMORY
LOCATIONS OF CUSTOM
INITIALIZATION IMAGES

FROM FIRMWARE TO
MICROCONTROLLER 820

U.S. Patent Feb. 2, 2016

Sheet 7 of 7

d
1=
Lo

l

US 9,250,920 B2

ISSUE INTERUPT

NOTIFY MICROCONTROLLER OF
PENIDING POWER SAVE STATE 702

Y

TRIGGER ALL PROCESSOR
CORES TOENTER
POWER SAVE STATE 704

Y

POLL CORES TO DETERMINE
CURRENT POWER STATE 706

ALL CORES
POWERED DOWN {ALL
POWER STATE REGISTER
BITS=0)7 708

YES

y

IDENTIFY MASTER
PROCESSOR 118

¥

TOPROCESSOR 1
COREY 112

¥

READ CUSTOM
INITIALIZATION IMAGE FOR
PROCESEGR t CORE 1 FROM
STORAGE DEVICE 714

A

RE-INFHALIZE PROCESSOR 1
CORE 1 WITH CUSTOM
IITIALIZATION IMAGE 71

Yy

ISSUE INTERUPT
TO ALL OTHER REMAINING
PROCESSOR CORES 718

hd

READ CUSTOM
INITIALIZATION IMAGEB FOR
REMAINING PROCESSOR CORES
FROM STORAGE DEVICE 720

¥

INITIALIZE ALL REMAINING
PROCESSOR CORES WiTH CUSTOM
INITIALIZATION IMAGES 722

FIG. 7

US 9,250,920 B2

1
INITIALIZING PROCESSOR CORES IN A
MULTIPROCESSOR SYSTEM

PRIORITY CLAIM

The present application is a continuation of U.S. patent
application Ser. No. 13/685,699, titled “System for Initializ-
ing Processor Cores in a Multiprocessor System,” filed on
Nov. 26,2012, the contents of which is incorporated herein by
reference in its entirety.

BACKGROUND

1. Technical Field

The present invention generally relates to data processing
systems. More specifically, the present invention relates to
initializing processor cores in a multiprocessor data process-
ing system.

2. Description of the Related Art

Some data processing systems are designed with multi-
core processors that often have various custom settings, data
and parameters that prompt the processor to perform or func-
tion in a specific desired manner according to a specific user
application. For example, in a multi-core processor, certain
instructions might not be implemented directly in the core,
but instead are emulated by microcode or firmware executing
on the core. In another example, two different implementa-
tions of similar logic may be present that result in different
performance depending on the number of cores or the number
of processors in the system.

It is sometimes desirable to be able to modify the settings,
data and parameters of a multi-core processor. In some com-
puter systems, a service processor can be used to update the
settings and parameters. However, not all systems are
designed with a service processor, and as such, those systems
do not typically support field updates of the settings and
parameters in the computer systems.

BRIEF SUMMARY

Disclosed is a method for initializing processor cores in a
multiprocessor system.

The method includes a microcontroller initializing a first
processor utilizing a common initialization image for all pro-
cessor cores within the first processor; retrieving system firm-
ware from a storage device and executing the system firm-
ware; initializing all remaining processors utilizing the
common initialization image; retrieving, via the executing
firmware, a system configuration of the multiprocessor sys-
tem; generating a customized processor initialization image
for each of the processor cores in the multiprocessor system;
storing the customized processor initialization images to a
next storage device; triggering all of the processor cores to
enter a power save state in which all initialization settings of
the processor cores are lost; and in response to all of the
processor cores entering the power save state, re-initializing a
first processor core of the first processor using a first custom-
ized initialization image generated for the first processor core.
The method further includes re-initializing the other proces-
sor cores utilizing their respective customized initialization
images retrieved from the next storage device.

The above summary contains simplifications, generaliza-
tions and omissions of detail and is not intended as a com-
prehensive description of the claimed subject matter but,
rather, is intended to provide a brief overview of some of the
functionality associated therewith. Other systems, methods,
functionality, features and advantages of the claimed subject

10

15

20

25

30

35

40

45

50

55

60

65

2

matter will be or will become apparent to one with skill in the
art upon examination of the following figures and detailed
written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The description of the illustrative embodiments is to be
read in conjunction with the accompanying drawings,
wherein:

FIG. 1 provides a block diagram representation of an
example data processing system within which one or more of
the described embodiments can be practiced;

FIG. 2 provides a block diagram representation of another
example data processing system within which one or more of
the described embodiments can be practiced;

FIG. 3 illustrates a block diagram of an example processor
and system memory in accordance with one or more embodi-
ments;

FIG. 4 illustrates a block diagram of another example pro-
cessor and local memory in accordance with one or more
embodiments;

FIG. 5A illustrates a block diagram of an example power
controller with a processor power state register in accordance
with one or more embodiments;

FIG. 5B illustrates a block diagram of an example micro-
controller following creation of the customized initialization
images in accordance with one or more embodiments;

FIG. 6 is a flow chart illustrating one example of a method
of generating customized initialization images during initial-
izing of processor cores in a multiprocessor system, accord-
ing to one or more embodiments; and

FIG. 7 is a flow chart illustrating a method of initializing
processor cores with customized initialization images in a
multiprocessor system, according to one or more embodi-
ments.

DETAILED DESCRIPTION

The illustrative embodiments provide a method, system
and computer program product for initializing processor
cores in a multiprocessor system. The method includes a
microcontroller initializing a first processor utilizing a com-
mon initialization image for all processor cores within the
first processor. The first processor detects system firmware
and executes the system firmware. All remaining processors
are initialized utilizing the common initialization image. The
executing firmware detects and retrieves configuration infor-
mation and data from the multiprocessor system. A custom-
ized processor initialization image for each of the processor
cores in the multiprocessor system is generated. The custom-
ized processor initialization images are stored to a storage
device. All of the processor cores are triggered to enter a
power save state in which all initialization settings of the
processor cores are lost. In response to all of the processor
cores entering the power save state, at least the first processor
core of the first processor is re-initialized using a first cus-
tomized initialization image generated for the first processor
core. The other processor cores are then also re-initialized
utilizing their respective customized initialization images.

In the following detailed description of exemplary embodi-
ments of the invention, specific exemplary embodiments in
which the invention may be practiced are described in suffi-
cient detail to enable those skilled in the art to practice the
invention, and it is to be understood that other embodiments
may be utilized and that logical, architectural, programmatic,
mechanical, electrical and other changes may be made with-
out departing from the spirit or scope of the present invention.

US 9,250,920 B2

3

The following detailed description is, therefore, not to be
taken in a limiting sense, and the scope of the present inven-
tion is defined by the appended claims and equivalents
thereof.

It is understood that the use of specific component, device
and/or parameter names (such as those of the executing util-
ity/logic described herein) are for example only and not
meant to imply any limitations on the invention. The inven-
tion may thus be implemented with different nomenclature/
terminology utilized to describe the components/devices/pa-
rameters herein, without limitation. Each term utilized herein
is to be given its broadest interpretation given the context in
which that term is utilized.

Those of ordinary skill in the art will appreciate that the
hardware components and basic configurations depicted in
FIGS. 1-5B may vary. The illustrative components within
DPS 100 and DPS 200 and the other figures are not intended
to be exhaustive, but rather are representative to highlight
essential components that are utilized to implement the
present invention. For example, other devices/components
may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply archi-
tectural or other limitations with respect to the presently
described embodiments and/or the general invention. The
example data processing systems depicted in FIG. 1 and FIG.
2 may be, for example, an IBM eServer pSeries system, a
product of International Business Machines Corporation in
Armonk, N.Y., running the Advanced Interactive Executive
(AIX) operating system (Trademark of IBM Corporation) or
LINUX operating system (Trademark of Linus Torvalds).

With reference now to the figures, and beginning with FIG.
1, there is depicted a block diagram representation of an
example data processing system (DPS), as utilized within one
embodiment. The data processing system can be described as
having features common to a server computer. However, as
used herein, the term “data processing system,” is intended to
include any type of computing device or machine that is
capable of receiving, storing and running a software product
and retrieving data/instructions from a storage device. There-
fore the DPS can include not only computer systems, but also
devices such as communication devices and personal and
home consumer devices that have multiple processors and/or
processor cores.

FIG. 1 and the following discussion are intended to provide
a brief, general description of an exemplary data processing
system adapted to implement the described embodiments.
While embodiments will be described in the general context
of instructions residing on hardware within a server com-
puter, those skilled in the art will recognize that some embodi-
ments may be implemented in a combination of program
modules running in an operating system. Generally, program
modules include routines, programs, components, and data
structures, which perform particular tasks or implement par-
ticular abstract data types. The invention may also be prac-
ticed in distributed computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in both
local and remote memory storage devices.

FIG. 1 illustrates an example DPS 100 that comprises a
multiprocessor system having processing components 105
that are in communication with system components/environ-
ment 107 through a communication fabric 109. Processing
components 105 include one or more processors, represented
as processing modules or chips 102 and 104. While two
processors are shown in FIG. 1, processing components 105
can include more of fewer processors. Processor 1 102

10

15

20

25

30

35

40

45

50

55

60

65

4

includes one or more microcontroller(s) 108 and several pro-
cessing units, processor cores or cores, including core 1 110,
core 2 112, core 3 114 and core 4 116. Processor 1 102 also
includes a cache subsystem 118. Cache subsystem 118 can
comprise one or more levels of caches, such as an L1 cache
and an L2 cache, and one or more ofthe lower levels of caches
can be a shared cache. Processor 1 102 has an internal
memory controller 120 and an internal I/O controller 122. All
of'the components of processor 102 can communication with
each of the other components of processor 102.

Processor 1102 is coupled to system interconnect or com-
munication fabric 109, which couples other components of
DPS 100 to processor 102. In one or more embodiments,
communication fabric 109 can be an address and data bus.
Communication fabric 109 includes specific messaging sig-
nals communicated over specific signal lines (not illustrated).
Processor 1 102 can be in communication with an optional
local memory or storage device 150 (indicated as optional by
dashed lines). In one embodiment, local memory 150 can be
an electrically erasable programmable read only memory
(EEPROM). In another embodiment, local memory 150 can
be a flash memory. Local memory 150 stores an optional
initialization image 152 for initializing processor 1 102 dur-
ing a start up sequence.

Processor 2 104, is similarly configured to processor 1 102.
Processor 2 104 includes a microcontroller 124 and several
processing units, processor cores, or cores, including core 1
130, core 2 132, core 3 134 and core 4 136. Processor 2 104
also includes a cache subsystem 138. Cache subsystem 138
can comprise one or more levels of caches, such as an .1
cache and an L2 cache, and one or more of the lower levels of
caches can be a shared cache. Processor 2 104 has an internal
memory controller 140 and an internal I/O controller 142. All
of the components of processor 2 104 can communication
with each of the other components of processor 2 104.

Processor 2 104 is coupled to system interconnect or com-
munication fabric 109, which couples other components of
DPS 100 to processor 2 104. Communication fabric 109 in an
embodiment can be an address and data bus. Communication
fabric 109 includes specific messaging signals communicated
over specific signal lines (not illustrated). In one configura-
tion, processor 2 104 can be in communication with an
optional local memory or storage device 156. In one embodi-
ment, local memory 156 can be an EEPROM. In another
embodiment, local memory 156 can be a flash memory. Local
memory 156 stores an optional initialization image 158 for
initializing processor 104 during a start up sequence. Proces-
sors 102 and 104 can communicate with each other through
one or more inter-processor busses 103. Inter-processor bus-
ses 103 allow the exchange and sharing of data and informa-
tion between processor 1 102 and processor 2 104.

System components/environment 107 includes a system
memory or storage device 162 coupled to communication
fabric 109 via a memory controller 160. System memory 162
can include therein a plurality of modules and routines,
including operating system (0/S) 163, firmware (F/W) 164,
software (S/W) 165, and data 166. The various software and/
or firmware modules have varying functionality when their
corresponding program code is executed by processors 102
and 104 within DPS 100. DPS 100 and specifically system
components 107 can also include input/output devices and
corresponding controllers, generally represented as /O 170,
and a network interface card (NIC) 172, among other com-
ponents. NIC 172 enables DPS 100 to connect to and com-
municate with other remote devices and networks.

System components 107 can further include physical com-
puter readable storage media 174 (or storage) such as hard

US 9,250,920 B2

5

disk drives coupled to communication fabric 109. Storage
media 174 can also include solid state storage devices, optical
drives and other storage devices. Computer readable storage
media 174 can store one or more customized initialization
images 174 for initializing processors 102 and 104 and work-
load, performance, and reliability data 178. Workload perfor-
mance reliability data 178 is a measure of the performance of
DPS 100. A service processor 180 is coupled to communica-
tion fabric 109. Service processor 180 is responsible for vari-
ous aspects of the operation of DPS 100. Service processor
180 includes a hypervisor 182, for operating one or more
virtual machines within multiprocessor system 105, and user
configuration data 184. User configuration data 184 allows a
user to establish various parameters and settings for the
operation of DPS 100. A user can provide input to user con-
figuration data 184 through a user interface 186, such as a
command line interface.

FIG. 2 illustrates another example data processing system
DPS 200 that comprises several multiprocessor system or
processing components 105 that are in communication with
system devices, firmware and software 107 through a com-
munication fabric 109. Processing components 105 include
one or more processors 102 and 104, which can be referred to
as processing modules or chips. While two processors are
shown in FIG. 2, processing components 105 can include
more or fewer processors. Processor 102 includes several
processing units, processor cores or cores, core 1 110, core 2
112, core 3 114 and core 4 116. Processor 102 also includes a
cache subsystem 118. Cache subsystem 118 can comprise
one or more levels of caches, such as an .1 cache and an L2
cache, and one or more of the lower levels of caches can be a
shared cache. Processor 102 has an internal memory control-
ler 120 and an internal I/O controller 122. All of the compo-
nents of processor 102 can communication with each of the
other components of processor 102.

Processor 102 is coupled to system interconnect or com-
munication fabric 109 that couples other components of DPS
100 to processor 102. Communication fabric 109 in an
embodiment can be an address and data bus. Processor 102
can be in communication with a local memory or storage
device 150. In one embodiment, local memory 150 can be an
EEPROM. In another embodiment, local memory 150 can be
a flash memory. Local memory 150 stores an initialization
image 152 for initializing processor 102 during a start up
sequence.

Processor 104 includes several processing units, processor
cores or cores, core 1130, core 2 132, core 3 134 and core 4
136. Processor 104 also includes a cache subsystem 138.
Cache subsystem 138 can comprise one or more levels of
caches, such as an L1 cache and an .2 cache, and one or more
ofthe lower levels of caches can be a shared cache. Processor
104 has an internal memory controller 140 and an internal /O
controller 142. All of the components of processor 104 can
communication with each of the other components of proces-
sor 104.

Processor 104 is coupled to system interconnect or com-
munication fabric 109 that couples other components of DPS
100 to processor 104. Communication fabric 109 in an
embodiment can be an address and data bus. Processor 104
can be in communication with a local memory or storage
device 156. In one embodiment, local memory 156 can be an
electrically erasable programmable read only memory (EE-
PROM). In another embodiment, local memory 156 can be a
flash memory. Local memory 156 stores an initialization
image 158 for initializing processor 104 during a start up
sequence.

10

15

20

25

30

35

40

45

50

55

60

65

6

Processing components 105 further include one or more
separate microcontroller(s) 108 that is separate from proces-
sors 102 and 104. Microcontroller(s) 108 can communicate
with both processors 102 and 104 and with both local memo-
ries 150 and 156. More than one microcontroller can be
provided, in one or more embodiments. As presented herein,
the term microcontroller encompasses one or more microcon-
trollers to account for those embodiments. Processors 102
and 104 can communicate with each other through one or
more inter-processor busses 103. Inter-processor busses 103
allow the exchange and sharing of data and information
between processor 102 and processor 104.

System components 107, which include devices, [/O com-
ponents, firmware O/S, applications and user space are
coupled to communication fabric 109. System components
107 include a system memory or storage device 162 and
computer readable storage media 174. System memory 162
can include therein a plurality of modules and routines,
including firmware (F/W) 164. F/W 164 has varying func-
tionality when the corresponding program code is executed
by processors 102 and 104 within DPS 100. Computer read-
able storage media 174 (or storage) can include hard disk
drives or solid state storage devices, optical drives and other
storage devices.

With reference now to FIG. 3, there is illustrated one
embodiment of a processor initialization subsystem 300. In
the discussion of FIG. 3, reference is also made to elements
described in FIG. 1 and FIG. 2. Processor initialization sub-
system 300 includes processor 102 and system memory 162
that can be accessed by processor 102 via communication
fabric 109. Processor 102 includes four processing units,
processor cores or cores 110-116, of which only core 1 110
and core 4 116 are shown. Core 1 110 includes customization
settings/data registers 302. Customization settings/data reg-
isters 302 are registers that contain customization initializa-
tion settings and data for core 1 110. Similarly, core 4 116
includes customization initialization settings/data registers
308. Customization settings/data registers 308 are registers
that contain customization settings and data for the configu-
ration of core 4 116. Core 2 112 and core 3 114 also include
customization settings/data registers (not shown).

Processor 102 further includes a microcontroller 108 and a
cache subsystem 118. Microcontroller 108 can control the
operation of portions of processor 102 during start-up or
initialization of the processor 102. Cache subsystem 118 can
store firmware 164 for rapid access by cores 110-116 during
the execution of firmware 164 within cores 110-116. Proces-
sor 102 also has an internal memory controller 120 and an
internal I/O controller 122. Memory controller 120 contains
the logic necessary to read and write to system memory 162.
Memory controller 120 controls memory access (read/write)
operations to system memory 162. /O controller 122 controls
input and output operations of data and instructions to com-
ponents external to processor 102.

Processor 102 also includes a power controller 320 and a
master processor status bit 310. Power controller 320 can
independently control the power levels and voltages provided
to components of processors 102. Power controller 320 con-
trols the power supplied to microcontroller(s) 108 and cores
110-116. Master processor status bit 310 informs multipro-
cessor system 105 which processor and core are the master
processor and core to be used during startup operations. In
one embodiment, processor 102 can store vital product data
(VPD) 330. VPD 330 is a collection of configuration and
informational data associated with a particular set of hard-
ware and software.

US 9,250,920 B2

7

Processor 102 can read data/instructions/code from and
write data and instructions to system memory 162 via
memory controller 120 or microcontroller(s) 108. System
memory 162 comprises one or more memory devices such as
DRAM memory or solid state memory. System memory 162
can store custom initialization images for cores 110-116 in a
memory location 340. In one or more embodiments, memory
location 340 can be determined by a basic address register
(BAR) (e.g., pointer 510, FIG. 5) within microcontroller(s)
108. In at least one embodiment, the firmware updates the
BAR to point to memory location 340. The custom initializa-
tion images include core 1 custom initialization image 360
stored at a logical or physical memory address 1 350, core 2
custom initialization image 362 stored at a logical or physical
memory address 2 352, core 3 custom initialization image
364 stored at a logical or physical memory address 3 354, and
core 4 custom initialization image 366 stored at a logical or
physical memory address 4 356. The custom initialization
images 360-366 are used to customize cores 110-116 with
customized settings and parameters during initialization.
System firmware 164 which is utilized for configuring mul-
tiprocessor system 105 and vital product data (VPD) 330 is
also stored on system memory 162. System firmware 164 is
executed by one or more of processor cores 110-116. Func-
tions, modules, routines, methods and processes of the
present disclosure can be provided as firmware code within
firmware 164.

With reference now to FIG. 4, there is illustrated another
embodiment of a processor initialization subsystem 400. In
the discussion of FIG. 4, reference is also made to elements
described in FIG. 1 and FIG. 2. Processor and system memory
400 includes processor 102 and local memory 150 that can be
accessed via a local bus 405. Processor 102 includes four
processing units, processor cores or cores 110-116. Core 1
110 includes customization settings/data registers 302. Cus-
tomization settings/data registers 302 are registers that con-
tain custom initialization settings and data for core 1 110.

Processor 102 further includes a microcontroller(s) 108
and a cache subsystem 118. Microcontroller 108 can control
the operation of portions of processor 102 during start-up or
initialization of the processor. Microcontroller(s) 108 can
read data and instructions from local memory 150. Cache
subsystem 118 can store firmware 164 for rapid access by
cores 110-116 during the execution of firmware 164 within
cores 110-116. Processor 102 also has an internal memory
controller 120 and an internal I/O controller 122. Memory
controller 120 contains the logic necessary to read and write
to local memory 150. Memory controller 120 controls
memory access (read/write) operations to local memory 150.
1/O controller 122 controls input and output operations of
data and instructions to components external to processor
102.

Processor 102 also includes a power controller 320 and a
master processor status bit 310. Power controller 320 can
independently control the power levels and voltages provided
to components of processors 102. Power controller 320 con-
trols the power supplied to microcontroller(s) 108 and cores
110-116. Master processor status bit 310 informs multipro-
cessor system 105 which processor and core are the master
processor and core to be used during the initial startup of DPS
100. In one embodiment, processor 102 can store vital prod-
uct data (VPD) 330. VPD 330 is a collection of configuration
and informational data associated with a particular set of
hardware and software.

Processor 102 can read and write data and instructions to
local memory 150 via memory controller 120 or via micro-
controller(s) 108. Local memory 150 is an electrically eras-

10

15

20

25

30

35

40

45

50

55

60

65

8

able programmable read only memory (EEPROM) device.
Local memory 150 can store a common initialization image
410. Common initialization image 410 is used by microcon-
troller(s) 108 to initialize a master processor and core such as
processor 102 and core 1 110 as well as all other cores within
processor 102 during an initialization procedure.

Local memory 150 can further store custom initialization
images for cores 110-116 in a pre-defined memory area or
location 420. The custom initialization images include core 1
custom initialization image 360 stored at a logical or physical
memory address 1 350, core 2 custom initialization image
362 stored at alogical or physical memory address 2 352, core
3 custom initialization image 364 stored at a logical or physi-
cal memory address 3 354, and core 4 custom initialization
image 366 stored at a logical or physical memory address 4
356. The custom initialization images 360-366 are used to
customize cores 110-116 with customized settings and
parameters during initialization. Local memory 150 can also
store system firmware 164 for configuring multiprocessor
system 105. System firmware 164 is run on or executed by
one or more of processor cores 110-116. One or more of the
functions, modules, routines, methods and processes of the
present disclosure can be provided as firmware code within
system firmware 164.

FIG. 5A illustrates further details of an example power
controller such as power controller 320 of FIG. 3 or FIG. 4. In
the discussion of FIG. 5A, reference is also made to elements
described in FIGS. 1-4. Power controller 320 controls the
power supplied to microcontroller 108, cores 110-116 and
other components of processor 102 through connections (not
shown) internal to processor 102. Microcontroller 108 and
core 110 can issue a power save command to power controller
320 that instructs power controller 320 to reduce power levels
to one or more cores 110-116. According to one embodiment,
power controller 320 can provide several levels of power
saving states or modes to cores 110-116. For example, power
controller 320 can provide a nap power state, a doze power
state, a rvwinkle power state, a sleep power state, and other
power states to cores 110-116. Within the described embodi-
ments, the deep power saving state can be and/or is equivalent
to the rvwinkle power state of a Power™ architecture.

The reduced power levels cause the cores targeted for
power reduction to enter an appropriate one of the deep power
saving states in which all initialization settings of the cores
are lost. Power controller 320 also includes a power state
register 322. Power state register 322 contains bits that indi-
cate the power state of processor cores 110-116. A “1”in a
register field of power state register 322 indicates that the core
is powered on and in a normal operational state. A “0” in a
register field of power state register 322 indicates that the core
is powered down and in a power saving state in which the
specific core has lost the core’s initialization settings.

FIG. 5B illustrates further details of an example microcon-
troller such as micro-controller 108 of FIG. 3 or FIG. 4. In the
discussion of FIG. 5B, reference is also made to elements
described in FIGS. 1-4. Microcontroller 108 can store a
pointer or data structure 510 that maps the custom initializa-
tion images to a memory address. Data structure 510 includes
a processor 1 core 1 custom initialization image pointer 520
that corresponds to a logical or physical memory address 1
350 where P1C1 custom initialization image 360 (FIG. 3) is
stored. Data structure 510 also includes processor 1 core 2
custom initialization image pointer 522 that corresponds to a
logical or physical memory address 2 352 where P1C2 cus-
tom initialization image 362 (FIG. 3) is stored. Data structure
510 also includes processor 1 core 3 custom initialization
image pointer 524 that corresponds to a logical or physical

US 9,250,920 B2

9

memory address 3 354 where P1C3 custom initialization
image 364 (FIG. 3) is stored. Finally, processor 1 core 4
custom initialization image pointer 526 that corresponds to a
logical or physical memory address 4 356 where P1C4 cus-
tom initialization image 366 (FIG. 3) is stored. Data structure
510 can contain image pointers and memory addresses up to
the corresponding number of cores contained within multi-
processor system 105. Data structure 510 can contain up to
processor X coreY custom initialization image pointers 528
that correspond to logical or physical memory addresses 7
358, where X, Y, and Z are integers. It is appreciated that the
description of data structure 510 can be extended to be
equivalent to a basic address register (BAR) that is stored in
microcontroller 108 and is programmed by the executing
firmware to point a specific memory location.

FIG. 6 illustrates a flowchart of an exemplary process for
preparing processor cores in a multiprocessor system to be
initialized. Computer implemented method 600 can be imple-
mented in DPS 100. The description of the method is pro-
vided with general reference to the specific components illus-
trated within the preceding figures. In the discussion of FIG.
6, reference is also made to elements described in FIGS.
1-5B. Generally the method is described as being imple-
mented via microcontroller 108 and core 1 110 and particu-
larly by the execution of code within microcontroller 108 and
by execution of firmware 164 within core 1 110. It is however
appreciated that certain aspects of the described methods may
be implemented via other processing devices and/or execu-
tion of other code.

Method 600 begins at the start block and proceeds to block
602 where microcontroller 108 detects an initial powering on
of processor 1 102 within DPS 100. In one embodiment,
microcontroller 108 can use information contained in power
state register 322 (FIG. 5A) to determine whether processor 1
102 is powering on. If microcontroller 108 detects that pro-
cessor 1 102 is powering on, microcontroller 108 reads a
common initialization image 152/410 stored in local memory
150 (block 604). Microcontroller 108 determines which pro-
cessor and core are the master processor and core to be used
at initial startup using master processor bit 310. Microcon-
troller 108 runs or initializes the core 1 110 of processor 1 102
(the master processor and core) with the common initializa-
tion image 152/410 (block 606). At block 608, the common
initialization image 152/410 executing on microcontroller
108 retrieves system firmware 164 from system memory 162.

Core 1 110 of processor 1 102 executes firmware 164
(block 610) and initializes all of the remaining processors and
cores within multi-processor system 105 with firmware 164
(block 612). The respective cores and processors within
multi-processor system 105 execute firmware 164 to detect a
system configuration for multi-processor system 105 at block
614. Detecting the system configuration comprises probing
inter-processor /O busses 103, local memories 150, 156 and
other processing components 105.

Local memories 150, 156 and system memory 162 can be
probed using serial presence detect (SPD). Serial presence
detect (SPD) refers to a standardized way to automatically
access information about a computer memory module. When
a modern computer is turned on, the computer starts by per-
forming a power-on self-test (POST) which includes auto-
matically configuring the hardware currently present. SPD is
a memory hardware feature that makes it possible for the
computer to know what memory is present, and what timings
to use to access the memory. Memory modules which support
SPD can store parameters associated with the memory mod-
ule in a pre-defined location. These data bytes can contain
information such as timing parameters, manufacturer, serial

10

15

20

25

30

35

40

45

50

55

60

65

10

number and other useful information about the memory mod-
ule. This data allows a device utilizing the memory to auto-
matically determine key parameters of the memory module.
For example, the SPD data on a memory module might pro-
vide information about the column address strobe (CAS)
latency, allowing this to be correctly set without user inter-
vention.

Each of the processor cores 110-116 generates respective
customized processor core initialization images 360-366 for
their respective processor cores (block 616) and stores the
customized processor core initialization images 360-366 to
memory addresses 350-356 within a memory location 340,
420 of one or both of storage device 150,162 (block 618). The
memory addresses identify a location in the storage device
where the customized initialization images 360-366 are
maintained. At block 620, the firmware 164 executing on each
of processor cores 110-116 transmits a memory location
address 350-356 associated with each of the customized ini-
tialization images 360-366 to the microcontroller 108.
Method 600 then ends.

FIG. 7 illustrates a flowchart of an exemplary process for
initializing processor cores with customized initialization
images. Computer implemented method 700 can be imple-
mented in DPS 100. The description of the method is pro-
vided with general reference to the specific components illus-
trated within the preceding figures. In the discussion of FIG.
7, reference is also made to elements described in FIGS. 1-5.
Generally the method is described as being implemented via
microcontroller 108 or another different microcontroller (not
shown) and core 1 110 and particularly by the execution of
code within microcontroller 108 and by firmware 164 acting
within core 1 110. It is however appreciated that certain
aspects of the described methods may be implemented via
other processing devices and/or execution of other code.

Method 700 begins at the start block and proceeds to block
702 where core 1 110 executing firmware 164 notifies micro-
controller 108 that the processors 102 and 104 are pending
entering a deep power save state. This step prepares the
microcontroller 108 for when processors 102 and 104 enter a
deep power save or quiescent state. Core 1 110 triggers all of
the cores 110-116, 130-136 of all of the processors 102, 104
to enter a deep power save state in which all initialization
settings of the processor core registers 302-308 are lost (block
704). Microcontroller 108 polls all of the processor cores to
determine a current power state of each of the cores (block
706). Determining the current power state of each of the cores
in block 706 can include checking the bits contained in power
state register 322.

At decision block 708, microcontroller 108 determines if
all of the processor cores have entered the deep power save
state. In response to all of the processor cores not entering the
deep power save state, microcontroller 108 continues to poll
all of the processor cores to determine a current power state of
each of the cores in block 706. In response to all of the
processor cores entering the deep power save state, micro-
controller 108 identifies a master processor and a master core
in the multiprocessor system (block 710). In one embodi-
ment, microcontroller 108 can identify the master processor
and master core by checking master processor status bit 310.
In one embodiment, the master processor can be processor 1
102 and the master core can be core 1 110.

Microcontroller 108 issues an interrupt to core 1 110 of
processor 1102 to wake core 1 110 from the deep power save
state (block 712). Microcontroller 108 reads the respective
customized initialization image 360 for core 1 110 from stor-
age device 150, 162 (block 714). Microcontroller(s) 108 re-
initializes core 1 110 of processor 102 with the core 1 cus-

US 9,250,920 B2

11

tomized initialization image 360 and core 1 110 reloads
firmware 164 at block 716. Core 1 110 executes firmware 164
and issues an interrupt to each of the remaining processors
and processor cores (e.g. processor 1 102, cores 112,114,116
and processor 2 104, cores 130, 132, 134 and 136) within the
multiprocessor system to wake all of the cores from their deep
power save states (block 718).

At block 720, microcontroller 108 reads, from the storage
device 150, each remaining processor core’s respective cus-
tomized initialization image. Microcontroller 108 initializes
each of the remaining processor cores 112-116 and 130-136
with their respective customized initialization images (block
722). Method 700 then terminates at the end block.

According to one or more embodiments, two different
microcontrollers are utilized and/or implemented on the mas-
ter processor. A first microcontroller performs the first set of
initialization procedures for the master processor, including
accessing the storage device to load the common initialization
image into the master processor, loading the firmware for
execution on the master processor, and then initializing the
other processors using the common initialization image. The
first microcontroller also responds to detecting that all pro-
cessor cores have entered the power save state by sending an
interrupt to wake up the master processor (or master core on
the first processor). A second microcontroller then performs
the second set of initialization procedures including: respond-
ing to the first processor or first processor core coming out of
the power save state by retrieving the customized initializa-
tion image for the master processor (or master core) from the
stored location; configuring the master processor or master
core with the customized initialization image; and then
retrieving the other customized initialization images for each
of'the other processor cores and configuring the other proces-
sors with their respective customized initialization images.

Each of the other processor cores is also awakened by the
first microcontroller transmitting an interrupt to that proces-
sor core. The interrupt can be transmitted just prior to the time
at which the second micro-controller is ready to load the
customized initialization image for that processor core. With
these embodiments, function block 712 of the above method
700 triggers the second microcontroller to prepare to perform
the re-initialization processes. It is appreciated, that as
described within method 700, the need for a second processor
is not required, and by extension, the function block 712 can
be omitted in the implementation of those embodiments.

One or more of the described embodiments provide a
method for initializing processor cores in a multiprocessor
system. A microcontroller initializes a first processor utiliz-
ing a common initialization image for processor cores within
the first processor. The first processor detects system firm-
ware and executes the system firmware. All remaining pro-
cessors are initialized utilizing the common initialization
image. The executing firmware detects a system configura-
tion of the multiprocessor system. A customized processor
initialization image for each of the processor cores in the
multiprocessor system is generated. The customized proces-
sor initialization images are stored to a storage device. All of
the processor cores are triggered to enter a power save state in
which all initialization settings of the processor cores are lost.
In response to all of the processor cores entering the power
save state, at least the first processor core of the first processor
is re-initialized using a first customized initialization image
generated for the first processor core. The remaining proces-
sor cores are then also re-initialized with their respective
customized initialization image.

In each of the flow charts above, one or more of the meth-
ods may be embodied in a computer readable medium con-

30

40

45

50

55

65

12

taining computer readable code such that a series of steps are
performed when the computer readable code is executed on a
computing device. In some implementations, certain steps of
the methods are combined, performed simultaneously or in a
different order, or perhaps omitted, without deviating from
the spirit and scope of the disclosure. Thus, while the method
steps are described and illustrated in a particular sequence,
use of a specific sequence of steps is not meant to imply any
limitations on the disclosure. Changes may be made with
regards to the sequence of steps without departing from the
spirit or scope of the present disclosure. Use of a particular
sequence is therefore, not to be taken in a limiting sense, and
the scope of the present disclosure is defined only by the
appended claims.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present disclosure may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, R.F,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java™, Smalltalk™, C++or
the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar

US 9,250,920 B2

13

programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s computer,
as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
beloaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

As will be further appreciated, the processes in embodi-
ments of the present invention may be implemented using any
combination of software, firmware or hardware. As a prepa-
ratory step to practicing the invention in software, the pro-
gramming code (whether software or firmware) will typically
be stored in one or more machine readable storage mediums
such as fixed (hard) drives, diskettes, optical disks, magnetic
tape, semiconductor memories such as ROMs, PROMs, etc.,
thereby making an article of manufacture in accordance with
the invention. The article of manufacture containing the pro-
gramming code is used by either executing the code directly
from the storage device, by copying the code from the storage
device into another storage device such as a hard disk, RAM,
etc., or by transmitting the code for remote execution using
transmission type media such as digital and analog commu-
nication links. The methods of the invention may be practiced
by combining one or more machine-readable storage devices
containing the code according to the present invention with
appropriate processing hardware to execute the code con-
tained therein. An apparatus for practicing the invention could
be one or more processing devices and storage systems con-
taining or having network access to program(s) coded in
accordance with the invention.

Thus, it is important that while an illustrative embodiment
of the present invention is described in the context of a fully

10

25

40

45

55

65

14

functional computer (server) system with installed (or
executed) software, those skilled in the art will appreciate that
the software aspects of an illustrative embodiment of the
present invention are capable of being distributed as a pro-
gram product in a variety of forms, and that an illustrative
embodiment of the present invention applies equally regard-
less of the particular type of media used to actually carry out
the distribution.

While the invention has been described with reference to
exemplary embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular system,
device or component thereof'to the teachings of the invention
without departing from the essential scope thereof. There-
fore, it is intended that the invention not be limited to the
particular embodiments disclosed for carrying out this inven-
tion, but that the invention will include all embodiments fall-
ing within the scope of the appended claims. Moreover, the
use of the terms first, second, etc. do not denote any order or
importance, but rather the terms first, second, etc. are used to
distinguish one element from another.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A computer-implemented method of initializing a plu-
rality of processor cores of a plurality of processors in a
multiprocessor system, the method comprising:

a microcontroller initializing a first processor of the plu-
rality of processors utilizing a common initialization
image, wherein the common initialization image is
usable to initialize all processor cores within the first
processor, and wherein the microcontroller is separate
from the plurality of processors;

in response to initializing the first processor using the com-
mon initialization image, the microcontroller retrieving
and loading a system firmware for execution on the first
processor;

initializing all remaining processors utilizing the common
initialization image;

US 9,250,920 B2

15

detecting, via the executing firmware, a system configura-
tion of the multiprocessor system, wherein detecting the
system configuration further comprises probing, within
the multiprocessor system, at least one of: one or more
inter-processor input/output (I/O) busses between the
plurality of processor cores, a system memory, one or
more local memories, and one or more other processing
components;

for each of the processor cores in the multiprocessor sys-

tem, generating a customized processor initialization
image based on settings and parameters identified in the
system configuration for that processor core;

storing the customized processor initialization images to a

memory location within a storage device;

triggering all of the processor cores to enter a power save

state in which all initialization settings of all of the
processor cores are lost; and

in response to the microcontroller detecting that all of the

processor cores have entered the power save state, the
microcontroller re-initializing at least a first processor
core of the first processor using a first customized ini-
tialization image generated for the first processor core,
wherein the microcontroller loads the first customized
initialization image from the memory location in the
storage device.

2. The method of claim 1, wherein the initializing of the
first processor utilizing the common initialization image
comprises detecting a powering on of the first processor and
initializing the processor cores of the first processor in
response to detecting the powering on.

3. The method of claim 1, further comprising the micro-
controller:

in response to detecting that all of the processor cores have

entered the power save state, the microcontroller issuing
an interrupt to the first processor core of the first proces-
sor that wakes the first processor core; and

reading the first customized initialization image for the first

processor core of the first processor from the storage
device.

4. The method of claim 3, further comprising:

issuing an interrupt to each remaining processor cores

within the multiprocessor system;

the microcontroller reading, from the storage device, cus-

tomized initialization images for each of the remaining
processor cores; and

the microcontroller initializing all of the remaining proces-

sor cores with their respective customized initialization
images.

5. The method of claim 1, further comprising:

in response to completing storing of the custom initializa-

tion images, transmitting a storage location address
associated with each of the customized initialization
images to the microcontroller, wherein the storage loca-
tion address identifies a location in the storage device at
which the customized initialization images are main-
tained.

10

15

20

30

35

40

45

50

16

6. The method of claim 1, further comprising: in response
to triggering all of the processor cores to enter the power save
state, the microcontroller continually polling all of the pro-
cessor cores to determine a current power state of each of the
cores; and

the microcrontoller triggering initialization of the first pro-

cessor only responsive to all the processor cores having
the power save state as the current power state.

7. The method of claim 1, further comprising:

notifying the microcontroller of a pending power save

command prior to triggering all of the processor cores to
enter the power save state.
8. The method of claim 1, further comprising:
identifying a master processor and a master core in the
multiprocessor system, wherein the master core of the
master processor receives an interrupt from the micro-
controller responsive to detecting that all of the proces-
sor cores have entered the power save state.
9. The method of claim 1, further comprising:
receiving at least a portion of the system configuration via
a user input setting; and

generating the customized processor initialization image
for each of the processor cores in the multiprocessor
system based at least partially on the portion of the
system configuration received via the user input setting.

10. The method of claim 1, wherein the one or more other
processing components include at least one of one or more
other processors and one or more other microcontrollers and
wherein the microcontroller controls the operation of por-
tions of the plurality of processors during start-up or initial-
ization.

11. The method of claim 1, wherein the one or more local
memories are probed using serial presence detect (SPD).

12. The method of claim 11, further comprising:

in response to probing the one or more local memories,

detecting at least one type of memory and at least one of:

memory timing parameters for the at least one type of
memory, wherein the memory timing parameters
include a column address strobe (CAS) latency of the
at least one type of memory;

a manufacturer of the at least one type of memory; and

a serial number of each memory module of the at least
one type of memory.

13. The method of claim 1, further comprising:

determining the memory location by reading a basic

address register (BAR) within the microcontroller; and
updating the BAR to point to the memory location.

14. The method of claim 1, wherein the common initial-
ization image is stored in one of a flash memory and an
electrically erasable programmable read only memory (EE-
PROM) separate from the storage device.

15. The method of claim 1, wherein the system configura-
tion comprises a configuration of hardware in the multipro-
cessor system.

